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a b s t r a c t

The LC–MS based metabolomics studies are characterized by the capacity to produce a large and complex
dataset being mandatory to use the appropriate tools to recover and to interpret as maximum information
as possible. In this context, a combined partial least square discriminat analysis (PLS-DA) and two-way
hierarchical clustering (two-way HCA) using Bonferroni correction as filter is proposed to improve analysis
in human urinary metabolome modifications in a nutritional intervention context. After overnight fasting,
10 subjects consumed cocoa powder with milk. Urine samples were collected before the ingestion product
and at 0–6, 6–12, 12–24 h after test-meal consumption and analysed by LC-Q-ToF. The PLS-DA analysis
showed a clear pattern related to the differences between before consumption period and the other
three periods revealing relevant mass features in this separation, however, a weaker association between
lustering
etabolite cluster

ood metabolome

mass features and the three periods after cocoa consumption was observed. On the other hand, two-way
HCA showed a separation of four urine time periods and point out the mass features associated with
the corresponding urine times. The correlation matrix revealed complex relations between the mass
features that could be used for metabolite identifications and to infer the possible metabolite origin. The
reported results prove that combining visualization strategies would be an excellent way to produce new

s tha
chem
bioinformatic application
the consumption of phyto

. Introduction

The purpose of metabolomics is to assess metabolic changes
n a comprehensive and global manner in order to explain bio-
ogical functions or provide detailed biochemical responses of
ellular systems [1]. Metabolomics experiments are based on a
tep-by-step protocol including data acquisition, data extraction,
ultivariate analysis (MVA), identification of relevant biomarkers

nd finally, but of equal importance, the biological interpreta-
ion of such biomarkers. This workflow has been reviewed [2–4]
nd a representation as a metroline of this pipeline has now
een proposed as an open-access site by the NUGO organiza-
ion (http://www.nugo.org/metabolomics). A major attempt to

dentify, develop and disseminate best practice in all aspects of

etabolomics has been made by the Metabolomics Standards Ini-
iative (http://msi-workgroups.sourceforge.net).

∗ Corresponding author. Tel.: +34 934034840; fax: +34 934035931.
E-mail address: candres@ub.edu (C. Andres-Lacueva).

731-7085/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpba.2009.06.033
t help the scientific community to unravel the complex relations between
icals and their expected effects on health.

© 2009 Elsevier B.V. All rights reserved.

Besides the other technological and methodological aspects
included in the metabolomics workflow [5] there is a growing inter-
est in improving the tools for the visualization and interpretation
of metabolome [6]. Basically, a good visualization of data provides
useful information for understanding how experimental conditions
could modify metabolome. This has been partially resolved by the
use of visualization tools, already used by other omics [7], which
are often the same as those proposed for multivariate statistical
analysis [8]. The most used are hierarchical clustering (HCA), prin-
cipal component analysis (PCA), partial least squares discriminant
analysis (PLS-DA) and their related variations such as orthogonal
projection of latent structures (OPLS) and orthogonal signal cor-
rection PLS-DA (OSC-PLSDA [9,10]. This filter was first introduced
by Wold et al. [11] and afterwards several groups have published
[12,13] various variants of the OSC algorithm with the idea of
remove structured or systematic variation in responses from matrix

X that is not correlated or orthogonal to Y. This filter has been suc-
cessfully applied in metabolomics studies [14,15]. In addition, other
chemometric techniques such as random forest [16] or support
vector machines (SVM) have been used in metabolomics studies
[17].

http://www.sciencedirect.com/science/journal/07317085
http://www.elsevier.com/locate/jpba
http://www.nugo.org/metabolomics
http://msi-workgroups.sourceforge.net/
mailto:candres@ub.edu
dx.doi.org/10.1016/j.jpba.2009.06.033
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Usually PCA, PLS-DA, OSC-PLSDA, OPLS allows to visualize the
ata as a scatter plots termed scores plot (samples) and loadings
lot (markers). In this context, Wiklund et al. [6] has proposed a new
catter plots to improve the visualization and interpretation termed
-plot and SUS-plot. Furthermore, other analysis and visualization
ools such as Cytoscape, MetaNetter, VANTED or MeltDB are also
vailable [18–21]. Likewise, the analysis and visualization of LC–MS
etabolomics datasets can be achieved using commercial and/or

reely available software [5].
An important factor regarding the data analysis is the high num-

er of mass features correlations that exist within the datasets.
he meaning and the origin of such correlations have already
een revised [7,22]. The localization of these correlations could
ssist metabolome analysis for at least three reasons [9]. First, the
orrelated variables are directly of interest due to could suggest
possible biochemical connection or biomarkers of a particular

xperimental condition. Second, detecting particulars group behav-
ors could point out the variables that are due to effects that

ay not be of interest, perhaps gender-related changes, there-
ore they can be excluded from further analyses which may in
urn simplify and improve sample clustering [9]. Third, these cor-
elations could also imply analytical effects such as in-source
ragmentations in LC–MS data that usually results as production
f fragments or adducts (MS signal redundancy [23]), and their

dentification could be very useful in the task of metabolite identi-
cation.

Metabolomics has been successful in several fields such as tox-
cology, medicine and pharmacology [24] and it has now become
mportant in the field of nutrition [25–27]. Among external and
nternal factors that could affect metabolome, diet has been shown
s a very important external factor because it produces notable
hanges in urine composition [28]. These modifications could be
elated to the presence of exogenous metabolites coming from
ood components such as phytochemicals (food metabolome)
r from microbiota metabolism [25]. Metabolomics studies of
ood metabolome may lead to the discovery of new phyto-
hemical metabolites and new markers of phytochemical intake
29].

Cocoa and cocoa derived foods have been considered as impor-
ant source of phytochemicals such as phenolic compounds mainly
avan-3-ols [30] and alkaloids mainly theobromine [31]. The health
enefits of cocoa products have been demonstrated in human stud-

es. Recently Cooper et al. [32] have been review the last decade of
he studies relating the consumption of cocoa and health. In this
ontext, cocoa consumption has been related with the improve-
ent of the antioxidant status, reduction of inflammation and

orrelate and with the reduction of heart disease risk.
The aim of this work was to explore the capacity to improve

etabolome visualization and interpretation using a strategy based
n a combined multivariate analysis with PLS-DA and two-way
CA. In addition, the ability to cluster mass features to character-

ze metabolites has been tested. For this purpose a real dataset,
rovided by a nutritional intervention study focused on studying
rinary metabolome modifications during the 24 h period after
ocoa powder consumption, was analyzed.

. Materials and methods

.1. Solvent and standards

The following chemicals were obtained commercially: theo-

romine and hippuric acid were purchased from Sigma–Aldrich (St.
ouis, MO), water for chromatographic separation was purified with
Milli-Q Gradient A10 system (Millipore, Schwalbach, Germany),

nd acetonitrile of HPLC grade came from Scharlab (Barcelona,
pain).
l and Biomedical Analysis 51 (2010) 373–381

2.2. Cocoa samples

The soluble cocoa powder used in the study contained 57%
of carbohydrates (sucrose, 46%; starch, 1%; complex carbohy-
drates, 10%), 16% of fiber, 5.4% of fat, 14.1% of protein, 3.97%
of moisture, 1.3% of theobromine, 0.13% of caffeine and 2% of
ash. The phenolic composition (mean ± SD) of the cocoa powder
was determined according to the methodology of Andres-Lacueva
et al. [33] and Roura et al. [34]: 23.1% of monomers with
0.71 ± 0.09 mg/g of (−)-epicatechin and 0.21 ± 0.01 mg/g of (+)-
catechin, 13.4 % of dimers, among which 0.64 ± 0.06 mg/g of
procyanidin B2, 63.6% of 3–8 mers [35,36] and flavonols including
33.87 �g/g isoquercitrin, 5.74 �g/g quercetin, 4.33 �g/g quercetin-
3-glucuronide and 36.32 �g/g quercetin-3-arabinoside. The total
polyphenolic content was 11.51 ± 0.95 mg catechin/g cocoa pow-
der.

2.3. Subjects and study design

Ten healthy volunteers (5 women and 5 men) between 18
and 50 years old with a corporal mass index of 21.6 ± 2.1 were
recruited. After overnight fasting, they were provided with 40 g of
cocoa powder with 250 ml of milk. Urine samples were obtained
before consumption (0 h) and during the 0–6 (6 h), 6–12 (12 h) and
12–24 h (24 h) periods after test meal consumption. The volunteers
remained in the clinical ward for over 6 h to avoid the possibil-
ity of transgressing the proscribed diet in the first study period.
For the remaining 18 h, all the volunteers followed a standardized
polyphenol-free diet (as they had done the day before the study).
None reported any history of heart disease, homeostatic disorders
or other medical issues, nor received any medication or vitamin
supplements. All gave written informed consent before their inclu-
sion in the trial, and the Institutional Review Board of the Hospital
Clinic of Barcelona (Spain) approved the study protocol. Partici-
pants were instructed to abstain from vitamin supplements, drugs,
alcoholic beverages and any polyphenol-rich foods for at least 48 h
before and during the test day. A list of allowed and forbidden foods
and two menus were given to all participants to help them to follow
the polyphenol-free diet strictly the day before the study. The urine
samples were stored at −80 ◦C until analysis.

2.4. Sample preparation

The urine samples were thawed before analysis and centrifuged
for 5 min at 12,000 × g. A 50 �L aliquot of the supernatant was
diluted with 50 �L of Milli-Q water and vortex mixed; the result-
ing solution was transferred to a 96-well plate autosampler for
HPLC-QToF analysis.

2.5. HPLC-QToF analysis

The chromatography was performed on an Agilent 1200 RRLC
(Agilent) using an RP-18 Luna 5 �m, 50 × 2.0 mm (Phenomenex,
Torrance, CA). The mobile phase consisted of (A) 0.1% HCOOH and
(B) acetonitrile 0.1% HCOOH. The flow rate was 600 �L/min and
the injection volume was 15 �L. A linear gradient with the follow-
ing proportions (v/v) of phase B (t, %B) was used: (0, 1), (4, 20),
(6, 95), (7.5, 95), (8, 1), (15, 1). The HPLC system was coupled to
a hybrid quadrupole time-of-flight QSTAR Elite (Applied Biosys-
tems/MDS SCIEX). The MS acquisition was performed in positive

ionization and full scan (70–700 amu) modes. Spray parameters
were IS +4000, DP 80; FP 380; DP2 10; IRD 6; IRW 5, TEM 400 ◦C
with N2 as curtain (CUR = 50) and nebulizer (NEB = 60). The QTOF
was calibrated with reserpine (1 pmol/�L) using the ions at m/z
195.1651 and 609.2812.
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.6. Data processing

LC–MS data was analyzed using the MarkerViewTM 1.2 software
Applied Biosystems, MDS SCIEX, Toronto, Ontario, Canada), which
erformed feature extraction by peak finding for each sample and
lignment using mass and retention time windows for the peaks.
eak detection was performed using a minimum peak width of
ppm, a noise threshold of 5 and a subtraction multiple factor of
.5. Alignment used 10 ppm mass tolerance and 0.1 min retention
ime tolerance. In addition, it was required that variables be present
n at least five samples (half the number of samples of each class).

ith these parameters a dataset containing 3000 mass features was
btained including all detected mass such as isotopes and adducts.

.7. ANOVA data filter

A filtering procedure using ANOVA was used to remove possible
ass features shared by all of the urine samples that could pro-

uce a common pattern of non-informative signals. In this context,
ne-way ANOVA with a Bonferroni correction was used to compare
he time effect on metabolome modifications. A probability level of
< 0.05 was considered statistically significant. Statistical analysis
as performed using the R environment [37].

.8. Multivariate analysis (MVA)

.8.1. Partial least squares discriminant analysis (PLS-DA) and
rthogonal signal correction-PLS-DA (OSC-PLSDA)

Partial least squares discriminant analysis (PLS-DA) is a super-
ised analysis that finds directions in a multivariate space for
aximum separation of observations (urine samples) belonging to

ifferent classes (time of urine collection).
In order to test the possible improvement of data analysis, data

ere pre-processed using orthogonal signal correction filter (OSC)
11] with time as a correction factor. The OSC filter remove struc-
ured or systematic variation in responses from matrix X (dataset)
hat is not correlated or orthogonal to Y (time) .The number of
SC-component was selected as proposed by Wold et al. [11]. The
pplication of this filter was by a corresponding tool provided by
IMCA-P 11.5 software.

Prior to analysis and in both methods, the dataset was mean
entered and Pareto scaled (each variable was weighted according
o 1/

√
SD). This scaling effectively increases the importance of low

oncentration metabolites in the resultant models, but not to an
xtent where the noise significantly contributes to the model [38].
he data was visualized by scatter plots termed scores or loadings
lots, where each point on the score plot represented an individual
rine sample and each point on the loadings plot represented a
ass feature. Moreover, directions in the score plot correspond to

irections in the loadings plot [10].
The quality of the models was evaluated by the goodness-of-

t parameter (R2X), the proportion of the variance of the response
ariable that is explained by the model (R2Y) and the predictive abil-
ty parameter (Q2), which was calculated by a seven-round internal
ross-validation of the data using a default option of the SIMCA-P+
1.5 software. The values of Q2 < 0 suggests a model with no predic-
ive ability, and 0 < Q2 < 1 suggests some predictive character, with
he reliability increasing as Q2 approaches 1 [39]. These parameters
re largely used in metabolomics studies.

Validation and the degree of over fitting for PLS-DA models, were
etermined by randomly permuting (n = 999) [40,41] the order of Y

urine collection time) and fitting separate models to the permuted
’s extracting the same number of components as the original
odel. The correlation coefficient between the original Y and the

ermuted Y is plotted against the cumulative R2 and Q2 and a regres-
ion line is calculated. The y-axis intercept (R2 and Q2 when the
l and Biomedical Analysis 51 (2010) 373–381 375

correlation coefficient is zero) is an indication of over fit; generally
the R2- and Q2-intercept limits for a valid model should be less than
0.4 and 0.05, respectively, as previously suggested by van der Voet
[42].

2.8.2. Two-way hierarchical clustering analysis (two-way HCA)
The dataset composed of the significant ions obtained as

described in the Section 2.7 was submitted for two-way HCA analy-
sis using PermutMatrix version 1.9.3 [43]. PermutMatrix is a freely
available program (http://www.lirmm.fr/∼caraux/PermutMatrix/
EN/index.html) enabling evaluation of the overall major HCA meth-
ods. Two-way clustering means that the mass features (rows) and
urine samples (columns) are clustered simultaneously to obtain
groups of samples and mass features that behave as similar as
possible [44]. This characteristic produces results that are easily
visualized and interpreted. Two-way HCA were carried out using
Pearson correlation, and aggregation of the observations was per-
formed with Ward’s method [45]. A heat map of intensities and a
matrix of mass feature correlations were obtained to visualize and
characterize urinary metabolome.

2.9. Ion characterization

To relate the molecular fragments, adducts as well as isotopes
normally constituting a chromatogram, to their quasi-molecular
metabolites, a modification of multivariate mass spectra recon-
struction based on the HCA of ions using a Pearson coefficient was
used [14,46]. This approach is based on two principles: first, since
fragmentation and adduct production of ions occurs after chro-
matographic separation, all fragments and adducts will appear at
the same retention time to their quasi-molecular ion. Secondly,
the high correlation between molecular fragments, adducts and
isotopes of a given quasi-molecular ion will be consistently recov-
ered throughout sets of various metabolic profiles. In this context a
dataset with 364 significant ions was subjected to HCA. Mass differ-
ences between ions from each cluster were analyzed in reference to
mass losses or adduct masses often observed in mass spectrometry
[47], as well as to characteristic neutral losses of important types
of phase II conjugates [48]. The LC–MS behavior of metabolites
was also compared with that proposed by the MassBank Database
(www.massbank.jp) and Human Metabolome Database (HMDB;
www.hmdb.ca).

2.10. Metabolite identification

Markers (Table 1) were further identified on the basis of their
exact mass, which was compared to those registered in the Human
Metabolome Database (HMDB; www.hmdb.ca) and the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) (http://www.genome.jp/)
(�mDa ≤ 3 mDa) using an in-house R script for R environment
[37], and to those expected metabolites of cocoa as described in
the literature [49–52]. In addition, the source fragmentation behav-
ior obtained from the characterization of ions (Table 1) was used
as complementary information to identify the metabolites as pro-
posed by Plumb et al. [53].

3. Results and discussion

Urine samples from ten volunteers were collected before (0 h),
and 6 (6 h), 12 (12 h) and 24 h (24 h) after 40 g of cocoa powder

with 250 mL of milk intake. This protocol yielded a total of 40 urine
samples. An LC–MS fingerprint of these samples was obtained.
After peak alignment and markers detection a dataset with 3000
mass features, containing their m/z, retention time and intensity
of each mass features, was submitted for multivariate analysis in

http://www.lirmm.fr/~caraux/PermutMatrix/EN/index.html
http://www.massbank.jp/
http://www.hmdb.ca/
http://www.hmdb.ca/
http://www.genome.jp/
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Table 1
Assignation of identified mass features.

Metabolite cluster Mass feature clustera Retention time Detected mass Metabolite putative identification Assignation Theoretical mass

a MC1 0.63 166.0718 N-methylguanine [M + H]+ 166.0723
149.0459 [M + H NH3]+

167.0738 (13C [M + H]+)
150.0547 (13C [M + H-NH3]+)

b MC2 4.18 226.0711 Vanilloylglycine [M + H]+ 226.0709
151.0392 [M + H-glycine]+

227.0756 (13C [M + H]+)
152.0418 (13C [M + H-glycine]+)

c MC3 5.33 385.1131 Dihydroxyphenyl valerolactone glucuronide [M + H]+ 385.1129
209.0818 [M + H-GlcAb]+

149.0603 [M + H-GlcA-C2H3O2]+

367.1070 [M + H-H2O]+

d MC3 2.88 170.0449 Furoylglycine [M + H]+ 170.0447
95.0114 [M + H-glycine]+

171.0472 (13C [M + H]+)
124.0376 [M + H-(CO2H2)]+

152.0338 [M + H-H2O]+

e MC4 2.18 167.0575 7-Methylxanthine [M + H]+ 167.0563
168.0579 (13C [M + H]+)
333.1036 [2M + H] +

124.0491 [M + H-CHNO]+

2.62 167.0586 3-Methylxanthine [M + H]+ 167.0563
168.0608 (13C [M + H]+)

f MC4 3.63 181.0720 Theobromine [M + H]+ 181.0719
182.0729 (13C [M + H]+)
138.0660 [M + H-CHNO]+

g MC5 4.97 206.0469 Xanthurenic acid [M + H]+ 206.0453
178.0512 [M + H-CO]+
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207.0501

a As noted in Fig. 2.
b GlcA: glucuronic acid.

rder to visualize and characterize urinary metabolome modifica-
ions.

.1. Partial least squares discriminant analysis (PLS-DA) and
rthogonal signal correction-PLS-DA (OSC-PLSDA)

A PLS-DA model with two latent variables was obtained with
n R2X, R2Y and Q2 of 0.25, 0.59 and 0.52, indicating low qual-
ty of the model (Fig. 1A). This result was related with the tight
rouping of classes 12 h and 24 h reflecting subtle metabolome dif-
erences between both classes. Hence, the robustness of the classes

as evaluated using the SIMCA-P tool for this purpose, finding that
he classes 0 h and 6 h were robust groups whilst the classes 12 h
nd 24 h showed very weak robustness. It should be noted that no
D scores plot was carried out because the model was constructed
ith only two latent variables which represent the axis of scatter

lots (scores and loadings plots)
In an attempt to improve this analysis an OSC filter was car-

ied out before the PLS-DA [14,15]. Data filtration was carried out
y removing two orthogonal components representing 17.88 of the
otal variation in the original model. The PLS-DA analysis of the fil-
ered data resulted in a three-latent variables model characterized
y R2X, R2Y and Q2 values of 0.31, 0.94 and 0.76, indicating that
his model was able to distinguish between the four classes. This
ata showed an improvement of the quality parameters comparing
ith PLS-DA without OSC filtering. In addition a permutation test

n = 999) was carried out to validate the model. This test showed

n R2 intercept of 0.35 and a Q2 intercept of −0.37 (Supplementary
ig. 1), validating the model. In this context, Fig. 1B depicts a time-
elated mean trajectory of samples, with a clear separation of four
ample classes. Additionally, both score plots also showed that uri-
ary metabolome 24 h after ingestion of cocoa did not reach the
(13C [M + H]+)

baseline (0 h), indicating an incomplete recovery 24 h after cocoa
intake.

With regards to the visualization of the markers patterns, a load-
ings plot related to the score plot was investigated. It should be
noted that the distance of a mass feature from the origin in this
plot represents the influence of that ion on the PLS components
and therefore on the classification in both the PLS-DA and OSC-
PLS-DA scores plots. The scores plot of the PLS-DA model showed
differences between before consumption period (0 h) and the other
three periods, however, not association between mass features and
three periods after cocoa consumption was observed (Fig. 1C). Only
some markers could be associated with the samples corresponding
with the 6 h period (Fig. 1C). With regards to the 3D loadings plot
of the OSC-PLSDA model, it showed a slight association between
mass features and samples in the corresponding class (Fig. 1D). The
3D loadings plot is a possible solution; however, due to the large
number of variables (3000) it is not a feasible option for handling.
In fact, this kind of tool is scarcely used even if the scores plot is
presented in 3D [54], and only a few works showed the 3D loadings
plot [55].

3.2. Two-way hierarchical clustering analysis (two-way HCA)

Pursuing the aim to improve the visualization and interpretation
of metabolome, the differences in metabolite signatures related to
the 24 h evolution of urinary metabolome after consumption of
cocoa were analyzed and visualized by a two-way HCA based on

the Pearson correlation coefficient and Ward’s method as a method
of aggregation. Unsupervised clustering using all metabolites did
not result in a good separation between samples (data not shown).
Therefore, an ANOVA test (p < 0.05) with a Bonferroni correction
was used as a filter. This statistical filter allows the detection of
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ig. 1. 2D PLS-DA score plot (A) and loadings plot (C) and 3D OSC-PLSDA scores plot
phere), 6 h (red sphere), 12 h (blue sphere) and 24 h (green sphere) after the cons
ons of metabolite cluster b, c and f (Table 1) have been noted in the PLS-DA loading

ass features related to the possible differences between the tested
lasses, providing a well-known index to assess variable importance
or further analysis before subjecting them to further visualization
ools. After statistical filtering the 12.14% (364 mass features) were
ept as significant markers and 87.96% of the data was removed
rom the dataset. These values were similar to those obtained by
occard et al. [56] where, using an ANOVA filtering (p < 0.01), about
0% of the total original information (LC-ToF/MS data) was removed
efore being submitted for PCA analysis in order to obtain the prin-
ipal components for a subsequent HCA. In this context, Denkert et
l. [57] used the Welch t-test as a statistical filter for subsequent
lustering, in the context of improving the visualization of the dif-
erences in metabolite signatures between borderline tumors and
varian carcinomas. The HCA using the ANOVA filter data (p < 0.05)
as the ability to classify the samples into two main groups cor-
esponding with 0 h (before cocoa consumption) and the other
eriods (6, 12 and 24 h) (Fig. 2). Subsequently, this cluster was
ivided into 2 cluster levels, separating the time 6 h from the 12
nd 24 h (Fig. 2). The final subdivisions succeeded in separating the
2 and 24 h classes being agreed with previous OSC-PLSDA analysis.

Investigation of the clustering behavior of the mass features
howed that two main clusters were obtained after their hier-
rchical clustering, one termed MC1 and another that presented

everal divisions, providing four clusters termed MC2, MC3, MC4
nd MC5 (Fig. 2). These patterns suggested that the cluster MC1
ould reflect the signatures that were meaningful at the base-

ine of the study (endogenous metabolites). As depicted in Fig. 2,
he clusters MC2, MC3 and MC5 were related to the samples at
d loadings plot (D) of LC–MS deriving from the urine samples collected at 0 h (black
on of 40 g of cocoa powder. In addition, the all quasi-molecular ions and daughter
s.

6, 12 and 24 h, respectively. Likewise, the cluster MC4 would group
those mass features present all of the time after cocoa consumption.
Overall, the clusters MC2-5 represent the mass features that would
reflect the evolution of metabolome during the 24 h after cocoa
powder consumption, including endogenous metabolites response
of the human metabolism, and the exogenous metabolites, mainly
phytochemicals provided by cocoa powder which has recently been
proposed as a part of food metabolome [27].

3.3. Metabolite characterization and identification

The LC–MS dataset is formed by a mixture of ions where, with
the quasi-molecular ion, it is possible to find different fragment
ions coming from the ionization source [53] as well as adducts
formed in the source [23]. Several in-source fragmentations such
as a loss of water or loss of carboxylic moiety have been described.
In addition, some in-source losses that are often similar in MS/MS
experiments, such as loss of glucuronic acid (−176 amu) or even
loss of glycine (−75 amu) have been described [53,58]. Also, some
adducts with Na, K and NH3 could be present in the MS dataset.
Following a published strategy [46] a clustering of ions based on
the correlation between the mass features in the dataset was used.
As shown in Fig. 3 a high correlation is detected in the clusters. A

detailed analysis revealed that quasi-molecular ions as well as the
in-source fragments and adduct ions are grouped in a small cluster
(Fig. 3). This result shows that as a general rule the “metabolites”
are formed by a number of ions produced by the MS technique
(Table 1). This data concurs with that proposed recently by Mocco
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Fig. 2. Two-way hierarchical clustering analysis (processed with PermutMatrix
according to the Pearson distance and Ward’s aggregation method). Heat map rep-
resentation of the clustered data matrix in which each colored cell represents the
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ntensity of appropriate mass feature in one sample, according to the color scale at
he bottom of the figure. Rows: mass features (364, p < 0.05 with a Bonferroni cor-
ection). Columns: urine samples before cocoa consumption (0 h) and 6 h, 12 and
4 h following cocoa consumption (40 samples).

t al. [59]. The authors showed that after analysis of the correlations
n an LC–MS dataset containing 3.374 mass signals the highest posi-
ive correlations were found for mass signals belonging to the same

etabolite, such as adducts and fragments. In addition, Chen et al.
14] proposing a correlation with Pearson coefficient allow to select
uasi-molecular ion in the first step of biomarker identification.

The non-quasi-molecular ions could reach the same or even
ore statistical relevance than the quasi-molecular ions; therefore,

he correct assignation of these fragments or isotopes is important
o avoid mistaken metabolite identification [23]. In this context, the
ons from the Table 1 have been place in the loading plot in order
o show their relevance in the PLS-DA model. As depicted in Fig. 1C
aughter ions presents similar relevance than the quasi-molecular

ons.
The metabolite cluster a profile was assigned as described in

able 1. A loss of 17 uma is observed from the ion at m/z 166 yield-
ng a daughter ion at m/z 149. According with Levsen et al. [48] this
oss could reflects a loss of NH3. The database research proposed
hat quasi-molecular ion (m/z 166) could be identified either as 7,

or 1-methylguanine. Concerning these metabolites, information
vailable in HMDB confirms that the ion at m/z 149 is the main prod-
ct in MS/MS experiment (HMDB metabocard: HMDB03282 and

MDB00897). MassBank database proposed the ion at m/z 149 as
ain fragment in MS/MS experiment with collision energy at 10 V

MassBank accession number: KO003407 and KO003412). More-
ver, Catinella et al. [60] showed that MS/MS spectra of both 7 and
-methylguanine reveal a fragmentation pattern where the ion at
l and Biomedical Analysis 51 (2010) 373–381

m/z 149 was an important fragment ion. Therefore the metabolite
cluster was putatively identified as N-methylguanine. Methylgua-
nines are a methylated purine bases. These metabolites haven been
detected in normal urine however changes in their levels has been
related with pathological conditions such as leukemia, tumors and
immunodeficiencies [61].

The metabolite cluster b showed a quasi-molecular ion at m/z
226 that showed a loss of 75 uma yielding a daughter ion at m/z 151.
This behavior has been previously associated to a loss of glycine
moiety [48]. In this context, a well-known urine metabolite, hip-
puric acid (N-benzoylglycine) was used as standard to test the
MS protocol in order to verify the ability to produce this loss of
glycine. As shown in Fig. 4 the mass spectrum of hippuric acid
was mainly characterized by cleavage of the amide bond with
loss of glycine (−75 amu). With lower abundance there was also
a loss of water (18 Da), a 13C isotope and Na adduct. The similarity
between the hippuric acid MS behavior and the metabolite clusters
suggested that this metabolite corresponded to glycine conjugate.
After database interrogation, the in-house phytochemical database
proposed that probably the ion at m/z 226.0711 would be the vanil-
loylglycine (226.0709). Taking into account the LC–MS pattern and
the database suggestion this metabolite clusters was putatively
identified as vanilloylglycine. This compound has been related to
the metabolism of vanillin, vanillic acid and ferulic acid [62], all of
them present in cocoa powder. Moreover, this behavior of glycine
conjugates has been observed in other studies and was used as
useful information for the identification of cinnamoylglycine and
hippuric acid [63].

The metabolite cluster c showed a quasi-molecular ion at m/z
385 with a four daughter ions at m/z 209, m/z 367 and m/z 149. This
LC–MS pattern could be associated with a glucuronide conjugate. In
fact, the loss of 176 amu from the ion at m/z 385 yields the ion at m/z
209. This loss has been demonstrated that this could be achieved by
both in-source fragmentation and MS/MS experiments [58] and has
been proposed as a useful tool for the identification of glucuronide
derivatives [53]. This metabolite cluster was well associated with
the samples at 12 h (MC3 cluster, Fig. 2) that imply an important
lag time after cocoa consumption. Moreover, it was not detected in
samples at 0 h. This behavior could suggest a possible origin from
the microbiota metabolism. In fact, several metabolites derived
from ring-fission of catechin are formed in the large intestine by
the colonic microbiota metabolism [52,64,65]. According with this
LC–MS behavior and with data of our in house phytochemicals
database, the quasi-molecular ion at m/z 385 was putatively iden-
tified as glucuronide derivative of dihydroxy-phenylvalerolactone.

Cluster d presents a profile with a 13C isomer and three daugh-
ter ions (Table 1). The LC–MS pattern was similar to metabolite
cluster b and hippuric acid, with an ion (m/z 95) provided by the
loss of 75 uma from the quasi-molecular ion (m/z 170) suggest-
ing also a possible glycine derivative. After database interrogation
a glycine derivative termed furoylglycine was proposed (HMDB
metabocard: HMDB00439). The HMDB also provide the MS/MS
information of thousands of metabolites. In this context, the MS/MS
information shows that this metabolite has a very similar behav-
ior to the metabolite cluster d. In fact the MS/MS recorded in the
HMDB shows the ions at m/z 152, m/z 124 and m/z 95 as the main
daughter ions of the ion at m/z 170. Therefore, this metabolite clus-
ter has been related to the metabolite furoylglycine. The precursors
of this metabolite are dietary furan derivatives which are part of the
aromatic compounds of cocoa powder [66].

Concerning the metabolite cluster e an in-source loss of 43 amu

was observed for the ion at m/z 167, with retention time of 2.18 min,
giving rise to the product ion at m/z 124. This pattern is similar
to that proposed by HMDB for the compound 7-methylxanthine
(HMDB metabocard HMDB01991). In accordance with its exact
mass and its LC–MS behavior, the ion at 167 was tentatively iden-



R. Llorach-Asunción et al. / Journal of Pharmaceutical and Biomedical Analysis 51 (2010) 373–381 379

F in gra
m relate
i

t
d
m
t
i
I
t
o
m
m
o
p

s
[
i
o
d
a
m
c
(

ig. 3. Metabolite correlation matrix. Correlations between metabolites are shown
etabolite excretion patterns. Black lines indicate a zoom to show the small cluster

ndicates a high correlated subcluster into MC3.

ified as 7-methylxantine. In this context, loss of 43 amu was not
etected for the ion at m/z 167 with retention time of 2.62 (Table 1,
etabolite cluster e) suggesting that this metabolite was probably

he 3-methylxanthine which showed an LC–MS behavior where the
on at m/z 124 has low intensity (HMDB metabocard HMDB01886).
n addition, this shift in the retention time also suggests these iden-
ifications [31,67]. These compounds derived from the metabolism
f alkaloids such as caffeine or theobromine [31]. In this context,
etabolite cluster f also presents a loss of 43 amu giving an ion at
/z 138 from the ion at m/z 181. This MS pattern had been previ-

usly proposed for theobromine [60,68], the main alkaloid in cocoa
owder [31].

The metabolite cluster g presents a quasi-molecular ion with
imilar fragmentation behavior to that proposed by Plumb et al.
53] for xanthurenic acid. The authors showed that the daughter
on at m/z 178 results from the loss of CO from the acid group. Also,
ther daughter ions at m/z 188 and m/z 160 were not detected in our

ata. In addition, the MS/MS behavior proposed by both MassBank
nd HMDB was similar to that proposed in Table 1. Therefore, this
etabolite cluster has been associated with xanthurenic acid. This

ompound is a metabolite of the tryptophan degradation pathway
KEGG database, tryptophan pathway ko00380).
yscale: the darker the colour gray, the higher the percentage of similarity between
d to the black square. Precise assignation of zoomed cluster in Table 1. Dotted line

3.4. Investigation of metabolite origin

A further example of the capability of this approach is to infer
the possible metabolic source of mass features. As described else-
where, high correlation does not imply a direct biological link, and
proximity in the cluster does not necessarily reflect an underlying
pathway structure [7,22,69]. Nevertheless, the study of correlations
combined with the two-way clustering could be very useful in dis-
covering the possible source (endogenous, exogenous or microbial
metabolites) of corresponding metabolites. As depicted in Fig. 3,
a high level of correlation is observed between the mass features
grouped in MC1 and any correlations were detected with the mass
features of other clusters. In this way, whereas the components of
MC2 have a high level of correlation, very little correlation has been
detected with clusters MC3 to 5. This result and their trend highly
related with the samples at 6 h, suggests that, even if it is provided
by the diet it is evident that a particular metabolism is responsi-

ble for their production. A subcluster into the MC3 cluster showed
a high correlation (Fig. 3). This subcluster is formed by different
metabolite clusters and one of them is the metabolite cluster c that
it has been identified as a glucuronide conjugate of dihydrophenyl-
valerolactone a colonic microbiota polyphenol metabolite (Table 1).
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ig. 4. LC–MS-QTOF spectra in positive ionization mode of commercial standard
ippuric acid.

nspection of this subcluster showed that other ions could be related
ith other microbial metabolites (data not shown) suggesting that

he whole cluster has a microbial origin. In fact, the microbial
etabolome is an important part of the urinary metabolome [25].

inally, a good level of correlation has been detected between the
omponents of MC3, MC4 and MC5 (Fig. 3). The published data in
his field is usually related to genetic modifications in plants [70]
r microorganisms [44] and, as far as we know, little information
bout the application of this approach to deduce the possible origin
f metabolite signatures in nutrition intervention studies is avail-
ble, even if the identification of food metabolome seems to be very
mportant for further correlations with their expected biological
ctivities and to produce a new markers of consumption [27].

. Conclusions

Nowadays Metabolomics Standards Initiative develops impor-
ant efforts to improve technical and methodological aspects
http://msi-workgroups.sourceforge.net). The ability to visualize
nd to interpret metabolomic data is without doubt a significant

bottleneck’ in metabolomics studies. In this context, the loadings
lot is an efficient tool showing the real contribution of all the mass

eatures in the model construction and therefore providing valuable
nformation about the relevance of this variable; however, it does
ot provide information about the possible relationships of mass

eatures. On the other hand, two-way cluster provides valuable
etailed information about the relationship between mass features
nd their corresponding classes; however, the information about
he relevance of each mass features in the construction of clus-
ers or subcluster divisions is sometimes not evident. Since these
pproaches provide complementary data, we propose an analysis,
isualization and interpretation methodology based on the combi-
ation of both tools during metabolomics studies. The strength of
his methodology was proven by its ability to pointing out relevant

ass features related to time depend on urinary modifications after
ocoa consumption.

The correlation matrix has proved to be an interesting tool pro-
iding information about the correlations in the dataset and to
nfer the possible origin of metabolites. An important conclusion
s that one metabolite is not characterized by an unique mass fea-

ure rather by several mass features. Some detected correlations
ere assigned as in-source fragmentation or adduct formation

nd were very useful in the putative identification of metabolite
lusters (Table 1). We agree that this procedure is not sufficient

[
[

[
[

l and Biomedical Analysis 51 (2010) 373–381

for final identification; however, it allows us to obtain an initial
identification that could be considered strong enough for those
metabolites that have been largely characterized by different tech-
niques over recent years (i.e. hippuric acid). Fortunately, databases
such as MassBank, Metlin (http://metlin.scripps.edu) and HMDB
have tried hard to compile experimental information related to the
NMR, GS–MS, LC–MS, MS/MS of thousands of metabolites.

The mass features correlations could also explain biological rela-
tions probably not related to a concrete pathway but rather to
the metabolic source. In this context, two-way clustering is an
interesting tool for discovering the possible source of metabolites.
According to experiment design and the results obtained, a num-
ber of mass features were well related to the time before cocoa
consumption, suggesting that more of them could be considered
as endogenous metabolites. On the other hand, the other clus-
ters would group both the endogenous metabolites reflecting the
consumption of phytochemicals (markers of effect) and exogenous
metabolites (markers of intake) provided by the diet. Confirma-
tion of this hypothesis is nowadays hampered by the scarcity of
information about phytochemical metabolites; mainly those com-
ing from the microbiota metabolism. The reported results prove
that combining visualization strategies would be an excellent way
to produce new bioinformatic applications that help the scientific
community to unravel the complex relations between the con-
sumption of phytochemicals and their expected effects on health.
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